To subscribe, advertise or contribute articles to www.nzmanufacturer.co.nz contact publisher@xtra.co.nz
  • Home
  • Latest News
    • Business News
    • Developments
    • Product News
    • Manufacturing Technology
    • Analysis
    • Innovators
    • Energy
    • Calendar
    • Editorial
  • About the Magazine
  • Advertise
  • Subscribe to the Magazine
NZ Manufacturer - Success Through Innovation
Success Through Innovation
  • Home
  • AI
  • Analysis
  • Business News
  • Climate Change
  • Covid-19
  • Cyber Security
  • Developments
  • Energy
  • Events
  • SouthMACH 2025
  • Innovators
  • Magazine
  • Manufacturing Technology
  • Industry 4.0
  • Product News
  • Productivity
  • Profiles
  • Smart Manufacturing Today
  • Sustainability
  • The Creative Class
  • Webinars

News Ticker

How manufacturers can prepare for the ESPR
Tech isn’t the Hero, it’s the plucky sidekick
Finding Your True Competitive Edge: A Guide for Manufacturers
Fixing manufacturing’s billion-dollar harm problem
Steel awards showcase local industry’s expertise and sophistication
Aotearoa’s Industry 4.0 journey
5S – Not That Old Chestnut
Scott Aylett, SEA Electrical a winner

Catalytic converter to cut car manufacturing costs

A new catalytic converter that could cut fuel consumption and manufacturing costs has been designed by a scientist from Imperial College London.

A catalytic converter is the component in a vehicle’s exhaust system that eliminates some harmful emissions. Tests suggest that the new prototype could reduce fuel consumption in a standard vehicle by up to three per cent. It could also deliver environmental benefits by reducing the amount of CO that each vehicle emits.

Catalytic converter PICThe new design uses up to 80 per cent less rare metal, a development that could significantly reduce costs for vehicle manufacturers. Catalytic converters are expensive to manufacture because they use precious metals such as platinum to eliminate emissions. These metals currently account for up to 60 to 70 per cent of the cost of the component.

The prototype is also predicted to perform better than existing models because the rare metal degrades less over the lifetime of the component. Laboratory tests suggest that it deteriorates by only four per cent over a distance of 100,000 kilometres, compared to 35 per cent for a standard catalytic converter.

The inventor of the prototype device is Dr Benjamin Kingsbury. He is also a Research Associate in the Department of Chemical Engineering at Imperial College London. He says: “Catalytic converters are the most important component in a vehicle for controlling exhaust emissions. Yet their design has not changed since they were first developed in the 1940s.

“The prototype I have developed could make cars cheaper to run because they use less fuel. It could potentially help manufacturers to reduce their costs. Drivers could also be a major beneficiary of this device, which could save on fuel costs and ultimately lead to reduced CO? emissions.”

A conventional catalytic converter is a ceramic block, which is honeycombed with microscopic channels that are coated in a rare metal such as platinum. Emissions travel from the engine to the exhaust system and through the channels, where the precious metal causes a chemical reaction to occur that eliminates the harmful pollutants.

Dr Kingsbury has advanced an existing manufacturing process to improve the structure of the microscopic channels, increasing the surface area and enabling the rare metal in the device to be distributed more effectively so that less metal is used. The increased surface area also makes the catalytic converter’s chemical reaction process more efficient.

The new design of the device increases fuel efficiency because it prevents ‘back pressure’, which is a build up of gases that can make the engine work harder, affecting its performance.

Dr Kingsbury developed the technology in conjunction with Professor Kang Li and Dr Zhentao Wu who are both from the Department of Chemical Engineering at Imperial. He has been awarded funding from the Royal Academy of Engineering to take his prototype to the marketplace.

Dr Kingsbury established an Imperial start-up company in December 2013 to market the prototype device. A key next step is to develop a production process for mass manufacturing.

 

-ECN Daily

Share this:

Related Posts

Remanufacturing PIC

Manufacturing Technology /

Christchurch manufacturing trade fair to create opportunities

Investment PIC

Manufacturing Technology /

Investing for growth

Ian Walsh

Manufacturing Technology /

Is your value network world class?

‹ Employers urged to take own counsel over pay rises › Auckland to host major gathering of Asia Pacific business leaders

1st June 2025

Categories

  • AI
  • Analysis
  • AusTech
  • Business Books
  • Business News
  • Calendar
  • Case Studies
  • Climate Change
  • Covid-19
  • Cyber Security
  • DESIGN
  • Developments
  • Editorial
  • EMEX 2014
  • EMEX 2016
  • EMEX 2018
  • EMEX 2024
  • ENERGY
  • Events
  • FOOD
  • Industry 4.0
  • Innovators
  • LEAN MANUFACTURING
  • Magazine
  • Manufacturing Technology
  • Product News
  • Productivity
  • Profiles
  • Rear View
  • Recent News
  • Recent News
  • Regional Manufacturing
  • Smart Manufacturing Today
  • Solidtech
  • SouthMACH 2015
  • SouthMACH 2019
  • Sustainability
  • The Circular Economy
  • The Creative Class
  • The Daily News
  • Uncategorized
  • Webinars

Archives

Back to Top

  • Home
  • AI
  • Analysis
  • Business News
  • Climate Change
  • Covid-19
  • Cyber Security
  • Developments
  • Energy
  • Events
  • SouthMACH 2025
  • Innovators
  • Magazine
  • Manufacturing Technology
  • Industry 4.0
  • Product News
  • Productivity
  • Profiles
  • Smart Manufacturing Today
  • Sustainability
  • The Creative Class
  • Webinars

To subscribe, advertise or contribute articles to nzmanufacturer.co.nz contact publisher@xtra.co.nz

(c) NZ Manufacturer, 2025